Elementary Number Theory (TN410)

Exercises: Sheet \#2

March 21, 2015

1. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real or complex numbers and $\phi(x)$ a function of class \mathcal{C}^{1}. Prove that

$$
\sum_{1 \leq n \leq x} a_{n} \phi(n)=A(x) \phi(x)-\int_{1}^{x} A(u) \phi^{\prime}(u) \mathrm{d} u \quad \text { where } \quad A(x):=\sum_{1 \leq n \leq x} a_{n}
$$

and that, more generally, we have $\sum_{x<n \leq y} a_{n} \phi(n)=A(y) \phi(y)-A(x) \phi(x)-\int_{x}^{y} A(u) \phi^{\prime}(u) \mathrm{d} u$.
2. Find all integer solutions of in the interval $[-500,500]$ of the following linear congruences:

$$
5 X \equiv 10(\bmod 35), \quad 12 X \equiv 14(\bmod 106), \quad 12 X \equiv 12(\bmod 42), \quad 36 X \equiv 18(\bmod 60)
$$

3. Find all integer solutions in the interval $[-500,500]$ of

$$
\left\{\begin{array} { l l }
{ x \equiv 2 } & { (\operatorname { m o d } 3) } \\
{ x \equiv 3 } & { (\operatorname { m o d } 4) } \\
{ x \equiv 4 } & { (\operatorname { m o d } 5) }
\end{array} \quad \left\{\begin{array} { l l }
{ x \equiv 3 } & { (\operatorname { m o d } 6) } \\
{ x \equiv 4 } & { (\operatorname { m o d } 7) } \\
{ x \equiv 7 } & { (\operatorname { m o d } 1 1) }
\end{array} \quad \left\{\begin{array} { l l l }
{ x \equiv 1 } & { (\operatorname { m o d } 1 1) } \\
{ x \equiv 2 } & { (\operatorname { m o d } 2 1) } \\
{ x \equiv 3 } & { (\operatorname { m o d } 1 0) }
\end{array} \quad \left\{\begin{array}{lll}
x \equiv 5 & (\bmod 31) \\
x \equiv 3 & (\bmod 27) \\
x \equiv 4 & (\bmod 8)
\end{array}\right.\right.\right.\right.
$$

4. (Extended Chinese remainder Theorem.)Let m_{1}, \ldots, m_{s} be positive integers and let $a_{1}, \ldots, a_{s} \in$ \mathbb{Z}. Prove that

$$
\left\{\begin{array}{l}
X \equiv a_{1} \bmod m_{1} \\
\vdots \\
X \equiv a_{s} \bmod m_{s}
\end{array}\right.
$$

has a solution exists if and only if $a_{i} \equiv a_{j} \bmod \operatorname{gcd}\left(m_{i}, m_{j}\right)$ for all i, j. Moreover, in the case when has a solution exists, any two solutions differ by some common multiple of m_{1}, \ldots, m_{n}.
5. Compute all primitive roots modulo $50,54,81,162$ and 250.
6. Let $\alpha \in \mathbb{N}, \alpha \geq 3$. Prove that for any $a \in \mathbb{Z}$ odd, there exists $\nu \in\{0,1\}$ and $\mu \in\left\{0, \ldots, 2^{\alpha-2}-1\right\}$ such that

$$
a \equiv(-1)^{\nu} \cdot 5^{\mu} \bmod 2^{\alpha} .
$$

Deduce that $\quad U\left(\mathbb{Z} / 2^{\alpha} \mathbb{Z}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{\alpha-2} \mathbb{Z}$.
7. (The Lifting Solutions Lemma) Let $f(X)$ be a polynomial with integer coefficients and with degree n, let p be a prime and let $a \in \mathbb{N}$. Prove the following:
(a) Suppose that $\zeta \in \mathbb{Z}$ is a solution of $f(X) \equiv 0 \bmod p^{a+1}$ then $\zeta=\xi+s p^{a}$ where ξ is a solution of $f(X) \equiv 0 \bmod p^{a}$ and $s \in\{0, \ldots, p-1\}$.
(b) If $\xi \in \mathbb{Z}$ is a solution of $f(X) \equiv 0 \bmod p^{a}$ such that the derivative $f^{\prime}(\xi) \not \equiv 0 \bmod p$, then there exists a unique integer $s \in\{0, \ldots, p-1\}$ such that $\xi+s p^{a}$ is a solution of $f(X) \equiv 0 \bmod p^{a+1}$.
(c) If $\xi \in \mathbb{Z}$ is a solution of $f(X) \equiv 0 \bmod p^{a}$ such that the derivative $f^{\prime}(\xi) \equiv 0 \bmod p$, then for all $s \in\{0, \ldots, p-1\}$ either
i. $\xi+s p^{a}$ is always a solution of $f(X) \equiv 0 \bmod p^{a+1}$ or
ii. $\xi+s p^{a}$ is never a solution of $f(X) \equiv 0 \bmod p^{a+1}$.
(hint: Use the Taylor expansion of f)
8. For any polynomial with integer coefficients f and any $m \in \mathbb{N}$, we set $N_{f}(m)$ to be the number of solutions in any complete set of residues modulo m of the congruence $f(X) \equiv 0 \bmod m$. Prove that $N_{f}(m)=\prod_{p \mid m} N_{f}\left(p^{v_{p}(m)}\right)$.
9. Let m be an odd integer and $a \in \mathbb{Z}$. Prove that if $X^{2} \equiv a \bmod m$ is solvable then $\left(\frac{a}{m}\right)_{J}=1$. Give an example of a and m where the opposite does not hold.
10. Compute a formula for the number of square roots of an integer a modulo m in terms of the Legendre symbols $\left(\frac{a}{p}\right)_{L}$ where $p \mid m$.
11. Prove that, for $p \geq 3$,

$$
\left(\frac{-3}{p}\right)_{L}=\left\{\begin{array}{ll}
1 & \text { if } p \equiv 1 \bmod 3 \\
0 & \text { if } p=3 \\
-1 & \text { if } p \equiv 2 \bmod 3 .
\end{array} \quad \text { and that } \quad\left(\frac{3}{p}\right)_{L}= \begin{cases}1 & \text { if } p \equiv \pm 1 \bmod 12 \\
0 & \text { if } p=3 \\
-1 & \text { if } p \equiv \pm 5 \bmod 12\end{cases}\right.
$$

12. Compute the following Jacobi symbols without ever factoring the odd integers involved:

$$
\left(\frac{2725}{9473}\right)_{J}, \quad\left(\frac{5811}{1013}\right)_{J}, \quad\left(\frac{7269}{573}\right)_{L}, \quad\left(\frac{7307}{5809}\right)_{J}, \quad\left(\frac{1269}{7231}\right)_{J} \quad\left(\frac{89439}{20259}\right)_{J} \quad\left(\frac{57599}{5557}\right)_{J}
$$

