Elementary Number Theory (TN410)

Exercises: Sheet #2

March 21, 2015

1. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of real or complex numbers and $\phi(x)$ a function of class \mathcal{C}^1 . Prove that

$$\sum_{1 \le n \le x} a_n \phi(n) = A(x)\phi(x) - \int_1^x A(u)\phi'(u) \,\mathrm{d}u \qquad \text{where} \qquad A(x) := \sum_{1 \le n \le x} a_n$$

and that, more generally, we have $\sum_{x < n \le y} a_n \phi(n) = A(y)\phi(y) - A(x)\phi(x) - \int_x^y A(u)\phi'(u) \, \mathrm{d}u \, .$

2. Find all integer solutions of in the interval [-500, 500] of the following linear congruences:

 $5X \equiv 10 \pmod{35}, \qquad 12X \equiv 14 \pmod{106}, \qquad 12X \equiv 12 \pmod{42}, \qquad 36X \equiv 18 \pmod{60}.$

3. Find all integer solutions in the interval [-500, 500] of

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{4} \\ x \equiv 4 \pmod{5} \end{cases} \quad \begin{cases} x \equiv 3 \pmod{6} \\ x \equiv 4 \pmod{7} \\ x \equiv 7 \pmod{11} \end{cases} \quad \begin{cases} x \equiv 1 \pmod{11} \\ x \equiv 2 \pmod{21} \\ x \equiv 3 \pmod{10} \end{cases} \quad \begin{cases} x \equiv 5 \pmod{31} \\ x \equiv 3 \pmod{27} \\ x \equiv 4 \pmod{8}. \end{cases}$$

4. (Extended Chinese remainder Theorem.)Let m_1, \ldots, m_s be positive integers and let $a_1, \ldots, a_s \in \mathbb{Z}$. Prove that

$$\begin{cases} X \equiv a_1 \mod m_1 \\ \vdots \\ X \equiv a_s \mod m_s \end{cases}$$

has a solution exists if and only if $a_i \equiv a_j \mod \gcd(m_i, m_j)$ for all i, j. Moreover, in the case when has a solution exists, any two solutions differ by some common multiple of m_1, \ldots, m_n .

5. Compute all primitive roots modulo 50, 54, 81, 162 and 250.

 $U(\mathbb{Z}/2^{\alpha}\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{\alpha-2}\mathbb{Z}.$

6. Let $\alpha \in \mathbb{N}$, $\alpha \geq 3$. Prove that for any $a \in \mathbb{Z}$ odd, there exists $\nu \in \{0, 1\}$ and $\mu \in \{0, \ldots, 2^{\alpha-2}-1\}$ such that

$$a \equiv (-1)^{\nu} \cdot 5^{\mu} \mod 2^{\alpha}$$

Deduce that

- 7. (*The Lifting Solutions Lemma*) Let f(X) be a polynomial with integer coefficients and with degree n, let p be a prime and let $a \in \mathbb{N}$. Prove the following:
 - (a) Suppose that $\zeta \in \mathbb{Z}$ is a solution of $f(X) \equiv 0 \mod p^{a+1}$ then $\zeta = \xi + sp^a$ where ξ is a solution of $f(X) \equiv 0 \mod p^a$ and $s \in \{0, \ldots, p-1\}$.

- (b) If $\xi \in \mathbb{Z}$ is a solution of $f(X) \equiv 0 \mod p^a$ such that the derivative $f'(\xi) \not\equiv 0 \mod p$, then there exists a unique integer $s \in \{0, \ldots, p-1\}$ such that $\xi + sp^a$ is a solution of $f(X) \equiv 0 \mod p^{a+1}$.
- (c) If $\xi \in \mathbb{Z}$ is a solution of $f(X) \equiv 0 \mod p^a$ such that the derivative $f'(\xi) \equiv 0 \mod p$, then for all $s \in \{0, \ldots, p-1\}$ either
 - i. $\xi + sp^a$ is always a solution of $f(X) \equiv 0 \mod p^{a+1}$ or
 - ii. $\xi + sp^a$ is never a solution of $f(X) \equiv 0 \mod p^{a+1}$.

(*hint:* Use the Taylor expansion of f)

- 8. For any polynomial with integer coefficients f and any $m \in \mathbb{N}$, we set $N_f(m)$ to be the number of solutions in any complete set of residues modulo m of the congruence $f(X) \equiv 0 \mod m$. Prove that $N_f(m) = \prod_{p|m} N_f(p^{v_p(m)})$.
- 9. Let *m* be an odd integer and $a \in \mathbb{Z}$. Prove that if $X^2 \equiv a \mod m$ is solvable then $\left(\frac{a}{m}\right)_J = 1$. Give an example of *a* and *m* where the opposite does not hold.
- 10. Compute a formula for the number of square roots of an integer *a* modulo *m* in terms of the Legendre symbols $\left(\frac{a}{p}\right)_{L}$ where $p \mid m$.
- 11. Prove that, for $p \geq 3$,

$$\left(\frac{-3}{p}\right)_{L} = \begin{cases} 1 & \text{if } p \equiv 1 \mod 3\\ 0 & \text{if } p = 3\\ -1 & \text{if } p \equiv 2 \mod 3. \end{cases} \text{ and that } \left(\frac{3}{p}\right)_{L} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \mod 12\\ 0 & \text{if } p = 3\\ -1 & \text{if } p \equiv \pm 5 \mod 12. \end{cases}$$

12. Compute the following Jacobi symbols without ever factoring the odd integers involved:

$$\left(\frac{2725}{9473}\right)_{J}, \quad \left(\frac{5811}{1013}\right)_{J}, \quad \left(\frac{7269}{573}\right)_{L}, \quad \left(\frac{7307}{5809}\right)_{J}, \quad \left(\frac{1269}{7231}\right)_{J} \quad \left(\frac{89439}{20259}\right)_{J} \quad \left(\frac{57599}{5557}\right)_{J}.$$