Solve the problems adding to the replies short and essential explenations. Please write the solutions in the designed areas. NO EXTRA SHEETS WILL BE ACCEPTED. 1 Problem = 4 marks. Duration: 2 hours. No questions allowed in the first hour and in the last 20 minutes.

1	2	3	4	5	6	7	8	TOTAL

1. Compute gcd $(1380,1110)$ using the Extended Euclidean Algorithm and deduce a Bezout Identity.
2. Compute the 7 -adic valuation $v_{7}(100!)$.
3. Let μ be the Möbius function and denote by $*$ the Dirichlet convolution of arithmetic functions. Prove that k-folded iterated convolution of μ satisfies:

$$
(\mu * \mu * \cdots * \mu)(n)=\prod_{p}\binom{k}{v_{p}(n)}(-1)^{v_{p}(n)}
$$

where for $a \in \mathbf{Z}$ and $b \in \mathbf{N},\binom{a}{b}=\frac{a(a-1) \cdots(a-b+1)}{b!}$ is the binomial coefficient.
(suggestion: try first to prove the formula for $k=2,3, \ldots$)
4. After having stated Gauss Theorem of existence of primitive roots modulo integers, compute all primitive roots modulo 686.
5. Find all integers X in the interval $[-10,200]$ such that $\left\{\begin{array}{l}X \equiv 3 \bmod 4 \\ X \equiv 2 \bmod 5 \\ X \equiv 4 \bmod 7 .\end{array}\right.$
6. After having stated the important properties of the Legendre-Jacobi Symbols, compute $\left(\frac{3073}{2919}\right)_{\mathrm{J}}$.
7. Prove that

$$
\left(\frac{-7}{p}\right)_{\mathrm{J}}= \begin{cases}1 & \text { if } p \equiv 1,2,4 \bmod 7 \\ 0 & \text { if } p=7 \\ -1 & \text { if } p \equiv 3,5,6 \bmod 7\end{cases}
$$

8. Let $p \geq 3$ be a prime and let $k \in \mathbf{N}$. Prove that
i) the equation $X^{k} \equiv 1 \bmod p$ has $\operatorname{gcd}(k, p-1)$ solutions,
ii) the equation $X^{k} \equiv 1 \bmod p^{\alpha}$ has $\operatorname{gcd}(k, p-1)$ solutions if $p \nmid k$.
