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Topics in Riemannian Geometry

Prerequisite: Geometry of surfaces, Gaussian curvature.

1. Introduction. We will treat some aspects of the relation between Riemannian geometry and topology

of manifolds. In particular, the aim is to prove Gauss-Bonnet theorem for surfaces and Hopf-Rinow

theorem which holds in any dimension. Both results will be proved using the study of geodesics; namely

the curves which, at least locally, minimize the distance on a Riemannian manifold.

2. Integration on surfaces. Area of a surface and total Gaussian curvature.

3. Covariant derivative. Covariant derivative of a tangent vector field. Parallel transport and

geodesics. Geodesic curvature.

4. Gauss-Bonnet theorem. Proof of Gauss-Bonnet theorem, local and global version. Relations

between topology and geometry of surfaces.

5. Hopf-Rinow theorem. Riemnnian manifolds of arbitrary dimension. The exponential map in

Riemannian geometry. Convex neighborhoods. Complete manifolds: proof of Hopf-Rinow theorem.

Applications: rigidity of the sphere.

6. Exercises. Written exercises at home and in class.
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